EE 435 **Lecture 4**

Fully Differential Single-Stage Amplifier Design

- General Differential Analysis
- 5T Op Amp from simple quarter circuit
- Biasing with CMFB circuit
- Common-mode and differential-mode analysis
- \Longrightarrow Common Mode Gain
- \implies Overall Transfer Characteristics

Design of 5T Op Amp

Basic Op Amp Design **Where we are at: Review from last lecture:**

- Fundamental Amplifier Design Issues
- Single-Stage Low Gain Op Amps
	- Single-Stage High Gain Op Amps
	- Two-Stage Op Amp
	- Other Basic Gain Enhancement Approaches

Single-Stage Low-Gain Op Amps **Where we are at: Review from last lecture:**

• Single-ended input

(Symbol does not distinguish between different amplifier types)

Differential Input Low Gain Op Amps **Review from last lecture:**

Will Next Show That :

• Differential input op amps can be readily obtained from single-ended op amps

• Performance characteristics of differential op amps can be directly determined from those of the single-ended counterparts

Counterpart Networks Review from last lecture:

Definition: The counterpart network of a network is obtained by replacing all nchannel devices with p- channel devices, replacing all p-channel devices with nchannel devices, replacing V_{SS} biases with V_{DD} biases, and replacing all V_{DD} biases with V_{SS} biases.

Counterpart Networks Review from last lecture:

Theorem: The parametric expressions for all small-signal characteristics, such as voltage gain, output impedance, and transconductance of a network and its counterpart network are the same.

Terminology and Notation Review from last lecture:

Synthesis of fully-differential op amps from symmetric networks and counterpart networks

Theorem: If F is any network with a single input and P is its counterpart network, then the following circuits are fully differential circuits --- "op amps".

• Fully Differential Single-Stage Amplifier

- **Languary General Differential Analysis**
	- 5T Op Amp from simple quarter circuit
	- Biasing with CMFB circuit
	- Common-mode and differential-mode analysis
	- Common Mode Gain
	- Overall Transfer Characteristics
	- Design of 5T Op Amp
	- Slew Rate

Characterization of Quarter Circuit

If the input impedance is infinite and circuit is unilateral, the two-port network only has two characterizing parameters : G_M and G

Characterization of Quarter Circuit (or Counterpart Circuit) with input port terminated in small-signal short circuit

If the input port of a two-port has an ac short, then the two-port reduces to a oneport characterized by the conductance G

12

Determination of op amp characteristics from quarter circuit characteristics $A_{\text{VQC}}(s) = \frac{-G_M}{sC_0 + G}$

Note: Factor of 2 reduction of differential gain since only half of the differential input is applied to the half-

Note: More reduction of gain since denominator increases

 $\mathsf{G}_{\textsf{M1}}$

₩

 C_{L}

−

 $VQCV^{\bullet}$ \leftarrow \sim \sim \sim

=

O and the contract of the co

L

G., 1990

+ G

 v_{γ}

2

+ ,ف

Determination of op amp characteristics from quarter circuit characteristics -- The "differential" gain --

 $A_{V0} = ?$ $BW=?$ GB=?

Small signal differential half-circuit

14

Determination of op amp characteristics from quarter circuit characteristics

-- The "differential" gain --

Small signal differential half-circuit (repeated from last slide) and Differential Op Amp

Determination of op amp characteristics from quarter circuit characteristics

-- The "differential" gain --

Small signal Quarter Circuit

16

Determination of op amp characteristics from quarter circuit characteristics

-- The "differential" gain --

V_{DD}

$$
Av = \frac{1}{v_d} = \frac{1}{sC_1 + G_1 + G_2}
$$

(this often occurs)

$$
\frac{-\frac{G_{M1}}{2}}{SC_{L} + G_{1} + G_{2}}
$$
\n
$$
A_{V0} = \frac{v_{OUT}}{v_{d}} = \frac{-G_{M1}}{2(G_{1} + G_{2})}
$$
\n
$$
BW = \frac{G_{1} + G_{2}}{C_{L}}
$$
\n
$$
GB = \frac{G_{M1}}{C_{L}}
$$

 $1 + 2$ *L* $BW = \frac{G_1 + G_2}{G_1 + G_2}$ *C*, the contract of α $=\frac{G_1+G_2}{G_1+G_2}$

 $2C₁$ *M L G* $GB = \frac{60}{100}$ *C*,

Remember this is applicable to ANY quarter circuit !

17

Comparison of Tail Voltage and Tail Current Source Structures

Small signal half-circuits are identical so differential voltage gains, BW, and GB are all the same

Biasing Issues for Differential Amplifier

• Tail voltage bias not suitable for large common-mode (CM) input range but does offer good output swing

• Tail current bias provides good CM input range but at the expense of a modest reduction in output signal swing

Differential Output Amplifiers

Single-Ended Outputs Differential Output

Theorem: For a symmetric circuit with symmetric outputs and differential excitations:

- Differential Voltage Gain Double that of Single-Ended Structure
- BW is the same
- GB Doubles for the Differential Output Structure
- Fully Differential Single-Stage Amplifier
	- General Differential Analysis
- \longrightarrow 5T Op Amp from simple quarter circuit
	- Biasing with CMFB circuit
	- Common-mode and differential-mode analysis
	- Common Mode Gain
	- Overall Transfer Characteristics
	- Design of 5T Op Amp
	- Slew Rate

Applications of Quarter-Circuit Concept to Op Amp Design

Single-stage single-input lowgain op amp

Small signal model of half-circuit

Single-stage low-gain differential op amp

-- The "differential" gain --

Single-Ended Output : Differential Input Gain

Have synthesized fully differential op amp from quarter circuit !

Termed the 5T Op Amp

Will determine small-signal properties of 5T op amp by inspection How many design variables? How many Degrees of Freedom?

• Have obtained analysis of fully differential op amp directly from quarter circuit !

- Still need to determine what happens if input is not differential !
- **Have almost obtained op amp small-signal characteristics by inspection from quarter circuit !!**
- Fully Differential Single-Stage Amplifier
	- General Differential Analysis
	- 5T Op Amp from simple quarter circuit
- **––** Biasing with CMFB circuit
	- Common-mode and differential-mode analysis
	- Common Mode Gain
	- Overall Transfer Characteristics
	- Design of 5T Op Amp
	- Slew Rate

Single-stage low-gain differential op amp

-- The "differential" gain -- volume

- CMFB circuit determines average value of the drain voltages
- Compares the average to the desired quiescent drain voltages
- Established a feedback signal V_{B1} to set the right Q-point
- Shown for V_{B1} but could alternately be applied to V_{B2}

Details about CMFB circuits will be discussed later

Have obtained differential gain of 5T Op Amp by inspection from quarter circuit

- Fully Differential Single-Stage Amplifier
	- General Differential Analysis
	- 5T Op Amp from simple quarter circuit
	- Biasing with CMFB circuit
- **EXCOMMON-mode and differential-mode analysis**
	- Common Mode Gain
	- Overall Transfer Characteristics
- Design of 5T Op Amp
- Slew Rate

Consider an output voltage for any linear circuit with two inputs (i.e. need not be symmetric)

By superposition

$$
v_{\rm OUT}\text{=A}_1v_1\text{+A}_2v_2
$$

where A_1 and A_2 are the gains (transfer functions) from inputs 1 and 2 to the output respectively

Define the common-mode and difference-mode inputs by

$$
v_c = \frac{v_1 + v_2}{2}
$$

\n
$$
v_d = v_1 - v_2
$$

\nThese two equations can be solved for v_1 and v_2 to obtain
\n
$$
v_1 = v_c + \frac{v_d}{2}
$$

\n
$$
v_2 = v_c - \frac{v_d}{2}
$$

31

Consider an output voltage for any linear circuit with two inputs

Substituting into the expression for v_{out} , we obtain

$$
v_{\text{OUT}} = A_1 \left(v_{\text{c}} + \frac{v_{\text{d}}}{2}\right) + A_2 \left(v_{\text{c}} - \frac{v_{\text{d}}}{2}\right)
$$

Rearranging terms we obtain

$$
v_{\text{OUT}} = v_{\text{c}} (A_1 + A_2) + v_{\text{d}} \left(\frac{A_1 - A_2}{2} \right)
$$

If we define A_c and A_d by

$$
A_c = A_1 + A_2
$$
 $A_d = \frac{A_1 - A_2}{2}$

Can express v_{out} as

$$
v_\mathsf{OUT}\texttt{=}v_\mathsf{c} \mathsf{A}_\mathsf{c}\texttt{+} v_\mathsf{d} \mathsf{A}_\mathsf{d}
$$

32

Depiction of singe-ended inputs and common/difference mode inputs

Alternate Equivalent Represntations

- Applicable to any linear circuit with two inputs and a single output
- Op amps often have symmetry and this symmetry further simplifies analysis

Consider any output voltage for any linear circuit with two inputs

Implication: Can solve any linear two-input circuit by applying superposition with v_1 and v_2 as inputs or with v_c and v_d as inputs. This can be summarized in the following theorem:

Theorem 1: The output for any linear network can be expressed equivalently as $v_{\rm OUT}$ =A $_1v_1$ +A $_2v_2$ or as $v_{\rm OUT}$ = $v_{\rm c}$ A $_{\rm c}$ + $v_{\rm d}$ A $_{\rm d}$ Superposition can be applied to either $\bm{\mathit{v}}_{\text{\tiny{1}}}$ and $\bm{\mathit{v}}_{\text{\tiny{2}}}$ to obtain $\bm{\mathsf{A}}_{\text{\tiny{1}}}$ and $\bm{\mathsf{A}}_{\text{\tiny{2}}}$ or to $\bm{\mathit{v}}_{\text{\tiny{c}}}$ and $\bm{\mathit{V}}_\text{d}$ to obtain $\bm{\mathsf{A}}_\text{c}$ and $\bm{\mathsf{A}}_\text{d}$

Observation: In a circuit with A_2 = - A_1 , A_C =0 we obtain

Analysis of op amps up to this point have assumed differential excitation

Extension to differential outputs and symmetric circuits

Differential Output

Note that this defined output is differential, not single-ended !

Observation: In a symmetric circuit with a symmetric differential output, A_C=0 so can be shown that $v_{\text{OUT}}=v_{\text{d}}A_{\text{d}}$ This is summarized in the theorem: v_{OL} $\mathbf{r} = v_{\text{d}}$ \mathbf{A}_{d}

Theorem 2: The symmetric differential output voltage for any symmetric linear network excited at symmetric nodes can be expressed as

$$
v_{\rm OUT}\text{=A}_{\rm d}v_{\rm d}
$$

where A_{d} is the differential voltage gain and the voltage $\boldsymbol{\vartheta}_{\mathsf{d}}$ = $\boldsymbol{\vartheta}_{\mathsf{1}}$ - $\boldsymbol{\vartheta}_{\mathsf{2}}$

Symmetric Circuit with Symmetric Differential Output

Theorem 2: The symmetric differential output voltage for any symmetric linear network excited at symmetric nodes can be expressed as

$$
v_{\rm OUT}{=}\mathsf A_{\rm d}v_{\rm d}
$$

where A_{d} is the differential voltage gain and the voltage $\boldsymbol{\vartheta}_{\text{d}}$ = $\boldsymbol{\vartheta}_{\text{1}}$ - $\boldsymbol{\vartheta}_{\text{2}}$

Proof of Theorem 2 for Symmetric Circuit with Symmetric Differential Output:

By superposition, the single-ended outputs can be expressed as

 v_{OUT} + = $T_{\text{OPA}} v_1$ + $T_{\text{OPB}} v_2$ v_{OUT} = $T_{\text{ONA}} v_1 + T_{\text{ONB}} v_2$

where T_{0PA} , T_{0PB} , T_{0NA} and T_{0NB} are the transfer functions from the A and B inputs to the single-ended + and - outputs

taking the difference of these two equations we obtain

$$
v_{\text{OUT}} = v_{\text{OUT+}} \cdot v_{\text{OUT-}} = (\text{T}_{\text{OPA}} \cdot \text{T}_{\text{ONA}}) v_1 + (\text{T}_{\text{OPB}} \cdot \text{T}_{\text{ONB}}) v_2
$$

by symmetry, we have

 T_{OPA} = T_{ONB} and T_{ONA} = T_{OPB}

thus can express V_{OUT} as

$$
v_{\text{OUT}} = (T_{\text{OPA}} - T_{\text{ONA}})(v_1 - v_2)
$$

or as

$$
v_\mathsf{OUT}\texttt{=}A_\mathsf{d}v_\mathsf{d}
$$

where $A_d = T_{OPA} - T_{ONA}$ and where $v_d = v_1 - v_2$

Consider any output voltage for any linear circuit with two inputs

Consider an output voltage for any linear circuit with two inputs

- **Difference-Mode/Common-Mode Superposition is almost exclusively used for characterizing Amplifiers that are designed to have a large differential gain and a small common-mode gain**
- **Analysis to this point has been focused only on the circuit on the left**

whether the circuit had any common mode gain.

Will now get the total output of an amplifier circuit !

Consider an output voltage for any linear circuit with two inputs

Does Conventional Wisdom Address the Common Mode Gain Issue?

Does Conventional Wisdom Address the Common Mode Gain Issue?

Yes – Common-Mode Gain was Addressed

Does Conventional Wisdom Address the Common Mode Gain Issue?

1.46 MB

FIGURE 2.3 Equivalent circuit of the ideal op amp.

TABLE 2.1 Characteristics of the Ideal Op Amp

- 1. Infinite input impedance
- 2. Zero output impedance
- Zero common-mode gain or, equivalently, infinite common-mode rejection
- 4. Infinite open-loop gain A
- 5. Infinite bandwidth

Yes – Common-Mode Gain was Addressed

How is Common-Mode Gain Modeled?

If Op Amp is a Voltage Amplifier with infinite input impedance, zero output impedance, and one terminal of the output is grounded

43

- Fully Differential Single-Stage Amplifier
	- General Differential Analysis
	- 5T Op Amp from simple quarter circuit
	- Biasing with CMFB circuit
	- Common-mode and differential-mode analysis
- **Example 2** Common Mode Gain
	- Overall Transfer Characteristics
- Design of 5T Op Amp
- Slew Rate

Single-Ended Outputs Tail-Current Bias

Single-Ended Outputs Tail-Voltage Bias

45 Differential Output

Consider tail-current bias amplifier

Consider tail-current bias amplifier with $i_c=0$

Common-Mode Half-Circuit (large signal: nonlinear)

Solving, we obtain

$$
v_{\text{OUTC}} = 0 \quad \text{thus A}_{\text{C}} = 0
$$

(Note: Have assumed an ideal tail current source in this analysis. A_C will be small but may not vanish if tail current source is not ideal. Analysis with nonideal current source is simple and will be discussed later)

Consider tail-voltage bias amplifier with $i_c=0$

Consider tail-voltage bias amplifier with $i_c=0$

Common-Mode Half-Circuit (large signal: nonlinear)

Solving, we obtain

$$
\frac{v_{\text{OUTC}}}{v_{\text{C}}} = A_{\text{C}} = \frac{-G_{\text{M1}}}{s\text{C} + G_{1} + G_{2}}
$$

This circuit has a rather large common-mode gain and will not reject common-mode signals

50

- Not a very good differential amplifier
- But of no concern in applications where v_c =0
- Fully Differential Single-Stage Amplifier
	- General Differential Analysis
	- 5T Op Amp from simple quarter circuit
	- Biasing with CMFB circuit
	- Common-mode and differential-mode analysis
	- Common Mode Gain
- **Lowing-** Overall Transfer Characteristics
- Design of 5T Op Amp
- Slew Rate

Overall Small-Signal Analysis

As stated earlier, with common-mode gain and difference-mode gains available

- Fully Differential Single-Stage Amplifier
	- General Differential Analysis
	- 5T Op Amp from simple quarter circuit
	- Biasing with CMFB circuit
	- Common-mode and differential-mode analysis
	- Common Mode Gain
	- Overall Transfer Characteristics
- Design of 5T Op Amp
	- Slew Rate

Design of 5T op amp

Need a CMFB circuit to establish V_{B1}

- Expressions for A_0 and GB were obtained from quarter-circuit
- Expressions for A_0 and GB in terms of natural parameters for quarter circuit were messy
- Can show that expressions for A_0 and GB in terms of natural parameters for 5T amplifier are also messy

Can a set of practical design parameters be identified?

Natural Parameters:

1 $\frac{W_3}{W_5}$ 1 $\frac{1}{3}$ $\frac{1}{5}$ $,\frac{11}{1},\frac{11}{1},V_{B1},V_{B2}$ $\left\{\frac{W_1}{L_1}, \frac{W_3}{L_3}, \frac{W_5}{L_5}, \frac{W_5}{L_5}, \frac{W_6}{L_5}\right\}$ *L L L*

Practical Parameters:

 $\{V_{EB1},V_{EB3},V_{EB5},P\}$

Constraints: $I_{D5} \simeq 2I_{D3}$ Net Degrees of Freedom: 4

Need a CMFB circuit to establish V_{B1}

Will now express small-signal performance characteristics in terms of Practical Parameters

57

Is this an attractive feature?

 $\{V_{EB1},V_{EB3},V_{EB5},P\}$

How should the remaining 2 DOF be used?

59

Stay Safe and Stay Healthy !

End of Lecture 4